Joint parameter estimation and Cramer-Rao bound analysis in ground-based forward scatter radar

نویسندگان

  • Tao Zeng
  • Cheng Hu
  • Mikhail Cherniakov
  • Chao Zhuo
  • Cong Mao
چکیده

Forward scatter radar (FSR) has potential applications such as target detection, classification, and recognition. The success of these issues depends on the accuracy of parameter estimation. Many parameter estimation methods for air-based FSR have been given, but cannot directly be applied in the ground-based ones for the different system functions. The received signal in ground-based FSR depends on the target’s electrical size and trajectory, which are unknown a priori. It is impossible to construct an optimal reception with accurate reference function in practical situations. An adaptive method of parameter estimation is therefore proposed in this article, which includes the construction of reference function and the two-dimensional parameter estimation. Furthermore, the Crammer-Rao bounds of estimation accuracy are obtained via the analytical derivation, which can be in turn utilized to determine the estimation step in the algorithm. Finally, the effectiveness of the algorithm is shown using both simulated and experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, ...

متن کامل

Performance analysis of measurement error regression in direct-detection laser radar imaging

In this paper a tool for synthetic generation of scanning laser radar data is described and its performance is evaluated. By analyzing data from the system, we will recognize objects on ground. In the measurement system it is possible to add several design parameters, which make it possible to test an estimation scheme under different types of system design. The measurement system model include...

متن کامل

Cramer-Rao Bounds and Coherence Performance Analysis for Next Generation Radar with Pulse Trains

We study the Cramer-Rao bounds of parameter estimation and coherence performance for the next generation radar (NGR). In order to enhance the performance of NGR, the signal model of NGR with master-slave architecture based on a single pulse is extended to the case of pulse trains, in which multiple pulses are emitted from all sensors and then integrated spatially and temporally in a unique mast...

متن کامل

تعیین حد پائین واریانس خطای تخمین برای زاویه سیگنال دریافتی با استفاده از روش CRB در آنتن های آرایه ای

One of the important issues in many of array systems such as Radar, Sonar, Mobile, and satellite telecommunications is the estimation of DOA of narrowband received signal. CRB is very important in evaluation of parameter estimation. CRB is the lower bound estimation error variance for any unbiased estimation. In this paper, the array antenna with equal distance arrays is extended in two separat...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012